1 Introduction to Many-Body Physics in Utracold Atomic Gases . . 1 1.1 Motivation: Many-Body Physics . . 1 1.2 Motivation: General Atomic Physics . . 4 1.3 History and Introduction to Many-Body Physics in Cold Atomic Systems . . 5 1.4 Challenges and Outline of Thesis . . 7 References . . 9 2 Theoretical and Experimental Techniques Used to Explore Many-Body Physics in Cold Atoms, Especially Optical Lattices . . 11 2.1 Experimental Techniques . . 11 2.2 Theoretical Techniques . . 18 References . . 31 3 Radio-Frequency Spectroscopy: Broad Introduction . . 33 3.1 Motivation and Background . . 33 3.2 Two Differing Pictures of RF Spectroscopy . . 34 References . . 35 4 RF Spectra: A Sum Rule Approach to Trapped Bosons in an Optical Lattice . . 37 4.1 Chapter Overview . . 37 4.2 Introduction . . 37 4.3 Spectrum of Harmonically Trapped Gas . . 39 4.4 Refinements . . 46 4.5 Summary . . 49 References . . 50 5 RF Spectra: Multiple Peaked Spectrum in a Homogeneous System . . 51 5.1 Chapter Overview . . 51 5.2 Introduction . . 52 5.3 Bose-Hubbard Model . . 54 5.4 Random Phase Approximation . . 55 5.5 Conclusions and Discussion . . 61 References . . 62 6 Radio-Frequency Spectra at Finite Temperature, Fluctuation-Response Relations, and Proposed Applications . . 63 6.1 Chapter Overview . . 63 6.2 Introduction . . 63 6.3 RF Spectra Introduction . . 64 6.4 Finite Temperature Superfluid . . 65 6.5 Applications . . 67 6.6 Determining Density Profiles from RF Spectra . . 75 6.7 Conclusions . . 83 References . . 84 7 RF Spectra: Summary, Conclusions, and the Future . . 85 References . . 86 8 Rotation, Inducing Gauge Fields, and Exotic States of Matter in Cold Atoms . . 87 8.1 Physics of Rotating Particles/Particles in Gauge Fields . . 88 8.2 Rotation . . 92 8.3 Other Methods of Inducing Gauge Fields . . 93 8.4 On-Site Correlations . . 94 References . . 94 9 Stirring up Fractional Quantum Hall Puddles . . 97 9.1 Chapter Overview . . 97 9.2 Introduction . . 97 9.3 Summary . . 103 References . . 104 10 Incorporating Arbitrarily Strong On-Site Correlations into Lattice Models . . 105 10.1 Chapter Overview . . 106 10.2 Body . . 106 References . . 113 11 Quantitative Calculation of Parameters for a Model Sufficiently General to Capture all On-Site Correlations . . 115 11.1 Background . . 115 11.2 Introduction, Notation, and Set Up . . 115 11.3 Quantitative Estimates of the Hamiltonian Parameters with Quantum Monte Carlo . . 116 11.4 Solutions for Various Values of t(mn) and Em . . 118 11.5 Note on Temperature Dependence of Response Functions . . 129 Reference . . 129 12 Summary, Conclusions, and the Future of Induced Gauge Fields and Lattices with On-Site Correlations . . 131 References . . 131 13 Techniques to Measure Quantum Criticality in Cold Atoms . . 131 13.1 Introduction . . 133 13.2 Note and Summary . . 139 References . . 140 14 Quantum Criticality: More Detailed Information . . 143 14.1 Bose-Hubbard Model . . 143 14.2 Finite Temperature Gutzwiller Theory . . 144 14.3 Non-Universal Contributions . . 144 14.4 Time of Flight Expansion . . 145 14.5 Finite Density O(2) Model . . 146 14.6 Calculating Density Profiles of One-Dimensional Hardcore Bosons . . 147 14.7 Other Cold Atoms Systems Displaying Quantum Criticality . . 148 14.8 Precise Definition of Universality . . 148 14.9 Quantum Monte Carlo Parameters and Signal-to-Noise . . 150 14.10 Finite-Size Scaling . . 151 References . . 151 15 Systems Other than Cold Atoms . . 153 16 Film Mediated Interactions Alter Correlations and Spectral Shifts of Hydrogen Adsorbed on Helium Films . . 155 16.1 Chapter Overview . . 155 16.2 Results . . 156 References . . 162 17 Candidate Theories to Explain the Anomalous Spectroscopic Signttures of Atomic H in Molecular H2 Crystals . . 165 17.1 Introduction and Motivation . . 165 17.2 Experiments . . 166 17.3 Scenarios . . 168 17.4 Other Observations . . 175 17.5 Summary, Conclusions, and Consequences . . 176 References . . 177 18 Helium and Hydrogen (super?)Solids . . 179 18.1 Background . . 179 18.2 Chapter Overview . . 179 18.3 Introduction . . 180 18.4 Torsional Oscillator NCRI . . 181 18.5 Two Supersolid Features . . 181 18.6 Blocked Annulus Torsional Oscillators . . 182 18.7 Dissipation Peaks . . 182 18.8 H2 Experiments . . 183 18.9 Frequency Dependence . . 186 18.10 Thermodynamics: Specific Heat and Pressure . . 187 18.11 3He Doping . . 188 18.12 Anomalous Critical Velocity . . 191 18.13 DC Flow . . 191 18.14 Shear . . 191 18.15 Implications for Mechanism . . 192 18.16 Future Directions . . 192 18.17 Conclusions . . 193 References . . 193 Appendix A: Relating Scattering Amplitudes and T-Matrix . . 195 Appendix B: Ward Identities for the RF Spectrum for the Bose-Hubbard Model—Vertex Corrections, Symmetries, and Conservation Laws . . 197 Biographical Sketch . . 229 Curriculum Vitae . . 231